Quantum algorithm for multivariate polynomial interpolation
نویسندگان
چکیده
How many quantum queries are required to determine the coefficients of a degree-d polynomial in n variables? We present and analyse quantum algorithms for this multivariate polynomial interpolation problem over the fields [Formula: see text], [Formula: see text] and [Formula: see text]. We show that [Formula: see text] and [Formula: see text] queries suffice to achieve probability 1 for [Formula: see text] and [Formula: see text], respectively, where [Formula: see text] except for d=2 and four other special cases. For [Formula: see text], we show that ⌈(d/(n+d))(n+dd) ⌉ queries suffice to achieve probability approaching 1 for large field order q. The classical query complexity of this problem is (n+dd) , so our result provides a speed-up by a factor of n+1, (n+1)/2 and (n+d)/d for [Formula: see text], [Formula: see text] and [Formula: see text], respectively. Thus, we find a much larger gap between classical and quantum algorithms than the univariate case, where the speedup is by a factor of 2. For the case of [Formula: see text], we conjecture that [Formula: see text] queries also suffice to achieve probability approaching 1 for large field order q, although we leave this as an open problem.
منابع مشابه
Optimal Quantum Algorithm for Polynomial Interpolation
We consider the number of quantum queries required to determine the coefficients of a degree-d polynomial over Fq. A lower bound shown independently by Kane and Kutin and by Meyer and Pommersheim shows that d/2 + 1/2 quantum queries are needed to solve this problem with bounded error, whereas an algorithm of Boneh and Zhandry shows that d quantum queries are sufficient. We show that the lower b...
متن کاملOn Lagrange multivariate interpolation problem in generalized degree polynomial spaces
The aim of this paper is to study the Lagrange multivariate interpolation problems in the space of polynomials of w-degree n. Some new results concerning the polynomial spaces of w-degree n are given. An algorithm for obtaining the w-minimal interpolation space is presented. Key–Words: Lagrange multivariate polynomial interpolation, whomogeneous polynomial spaces, Generalize degree.
متن کاملA Deterministic Multivariate Interpolation Algorithm for Small Finite Fields
We present a new multivariate interpolation algorithm over arbitrary fields which is primarily suited for small finite fields. Given function values at arbitrary t points, we show that it is possible to find an n-variable interpolating polynomial with at most t terms, using the number of field operations that is polynomial in t and n. The algorithm exploits the structure of the multivariate gen...
متن کاملApproximating optimal point configurations for multivariate polynomial interpolation
Efficient and effective algorithms are designed to compute the coordinates of nearly optimal points for multivariate polynomial interpolation on a general geometry. “Nearly optimal” refers to the property that the set of points has a Lebesgue constant near to the minimal Lebesgue constant with respect to multivariate polynomial interpolation on a finite region. The proposed algorithms range fro...
متن کاملA new algorithm for solving multivariate polynomial problems by means of interpolation
In this paper we present a new kind of algorithm, for finding a solution (g0(x),g1(x), . . . ,gn(x)) of the system: g0(x)p0(x) + g1(x)p1(x) + . . . + gn(x)pn(x) = v(x), where v(x),gi(x) and pi(x) are multivariate polynomials of a certain degree, in the variables x = (x1,x2, . . . ,xn). The algorithm is based on a multivariate interpolation approach, which is a straightforward extension of the u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings. Mathematical, physical, and engineering sciences
دوره 474 2209 شماره
صفحات -
تاریخ انتشار 2018